Question 2:

Objectives: This question is about Newton-Raphson Iterative Method.

Given the following non-linear equation, it is required to solve it using $\mathrm{N}-\mathrm{R}$ iterative method. Start with $x_{\circ}=0.4$ and approximate the root with a relative error $\leq 5 \%$.

$$
f(x)=8 \sin (x) e^{-x}-1
$$

Question 3:

Objectives: This question is about Guass-Sidel iterative method.

Given the following system of linear equations, it is required to apply 3-iteration using Guss-Sidel iterative method and find the absolute error in the last iteration.

$$
\begin{array}{ccc}
5 x-2 y+z & =11 \\
-2 x+6 y-3 z & =-7 \\
x+2 y+4 z & =36
\end{array}
$$

Question 4:

Objectives: This question is about interpolation.
Estimate $\mathrm{f}(1)$ for the following readings by using $3^{\text {rd }}$ order Newton interpolating polynomial.

x	1.2	1.4	1.6	1.8
$\mathrm{f}(\mathrm{x})$	5.72	5.28	4.68	3.92

Question 5:
Objectives: This question is about numerical integration.
Use 7 -sample point of $1 / 3$ composite Simpson's rule to approximate the integral of the following function over the interval $\mathrm{x}=1$ to $\mathrm{x}=10$.

$$
f(x)=x^{2} \log \left(x+\sqrt{x^{2}+1}\right)
$$

Question 6:
Objectives: This question is about 2nd order Runge-Kutta (Huen's) numerical integration method.
Given $\frac{d y}{d x}=\frac{\cos (6 x)}{\left(y^{2}+x+1\right)}$ with $y(0)=0.1$, it is required to find $y(0.2)$ using Huen's numerical integration method with step size $h=0.1$.

