Question 2: Objectives: This question is about Newton-Raphson Iterative Method.

Given the following non-linear equation, it is required to solve it using N-R iterative method. Start with $x_{\circ} = 0.4$ and approximate the root with a relative error $\leq 5\%$.

 $f(x) = 8 \sin(x) e^{-x} = 1$

$$\int (x) - OSIII(x)e^{-1}$$

Question 3: Objectives: This question is about Guass-Sidel iterative method.

Given the following system of linear equations, it is required to apply 3-iteration using Guss-Sidel iterative method and find the absolute error in the last iteration.

5 <i>x</i>	-2y	+z	=11
-2x	+6y	-3z	= -7
x	+2y	+4 <i>z</i>	= 36

Question 4:

Objectives: This question is about interpolation.

Estimate f(1) for the following readings by using 3^{rd} order Newton interpolating polynomial.

X	1.2	1.4	1.6	1.8
f(x)	5.72	5.28	4.68	3.92

Question 5:

Objectives: This guestion is about numerical integration.

Use 7-sample point of 1/3 composite Simpson's rule to approximate the integral of the following function over the interval x=1 to x=10.

$$f(x) = x^2 \log(x + \sqrt{x^2 + 1})$$

Question 6:

Objectives: This question is about 2nd order Runge-Kutta (Huen's) numerical integration method.

Given $\frac{dy}{dx} = \frac{\cos(6x)}{(v^2 + x + 1)}$ with y(0)=0.1, it is required to find y(0.2) using Huen's

numerical integration method with step size h=0.1.

Good Luck

(6 Marks)

(6 Marks)

(6 Marks)

(4 Marks)

(6 Marks)